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In the past it has been unknown whether complex rational best Chebyshe\
approximations (BAs) on the unit disk need be unique. This paper answers this and
related questions by exhibiting examples in which: (a) the BA is not unique. (b) the
number of distinct BAs is arbitrarily large. (c) the BA to a real analytic function I
(i.e .• I(z) = I(z)) among rational functions with real coefficients is not unique, and
(d) the complex BAs to such a function are better than any approximation with real
coeffIcients. Except in case (d). our constructions hold for approximation or
arbitrary type (m. n) with n;? I. Finally. by the same methods we also establish the
new result that if a function is approximated on a small disk about 0 of radius I: (or
on an interval of length f.). then as {; -. O. the BA need not in general approach the
corresponding Pade approximant in a sense considered by J. L. Walsh.

I. INTRODUCTION

Let S denote the unit circle 1z: Iz I = If, LI the closed unit disk
jz : Iz I. ::( q, and 11·11 the supremum norm 111ft II = SUPoE.1 I¢i(z )1. Let A = A (LI)
be the set of functions continuous on LJ and analytic in the interior, and for
arbitrary integers m, n ~ 0, let R mn c; A be the subspace of rational functions
of type (In, n) with complex coefficients and no poles in LJ. For simplicity we
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will also write Pm = R mO' Given I E A, a best approximation (BA) to I on .d
in Rmn is a function r* E R mn that satisfies

III - r*11 = inf III - rll·
rER mn

The existence of rational BAs on the disk, and more generally on an
arbitrary compact subset of with no isolated points, was established by
Walsh in 1931 117]. The question of uniqueness has been less fully
understood. In 1934 Walsh showed that on at least some complex domains
BAs are not unique, by exhibiting an example in which the domain of
approximation is a crescent-shaped Jordan region or arc that is symmetric
with respect to the unit circle [17, 181. For many years this was apparently
the only known instance of nonuniqueness in complex rational Chebyshev
approximation. A more natural domain was added to the collection when
Goncar [61 and Lungu IIO I and Saff and Varga I12, 13, 161 found that
complex rational BAs to a real function on a real interval can be nonunique
for all m >0, n > I. But the question of whether approximations on the disk
must be unique has remained open 1161.

Certain related matters have also remained unresolved. including two
questions mentioned by Ellacott in 141. Let us say that I is a real anazl'tic
function if I(z) = I(z) , that is, if its Maclaurin series has all real coefficients.
and let A rand R :lIn be the subsets of real analytic functions in A and R 1111"

respectively. Ellacott asks: Are BAs to real analytic functions unique. if one
restricts attention to real analytic approximations? Can a real analytic
function on the disk, in contrast to the situation on the interval. always be
approximated as well in R :1111 as in R mil ?

In this paper we show that the answers to all of the above questions are
negative. Thus rational Chebyshev approximation on the disk. despite some
expectations to the contrary. is apparently fairly typical among nonlinear
approximation problems. where nonuniqueness is the rule. For other
examples. best complex rational least-squares approximations on both the
circle and the interval are nonunique 15. 9 [. and so are real Chebyshev
approximations by sums of exponentials to continuous real functions on an
interval. if confluent exponents are permitted III. (It is interesting that in the
latter case. there is a definite limit to the number of distinct BAs of given
degree that a function can possess 121: we will see that this is not the case
here.) On the other hand. real rational BAs to a continuous real function on
a real interval are well known to be unique. and they are characterized by an
equioscillation condition due to Achieser 1I I I.

All of our proofs consist of elementary symmetry arguments. But to make
sure that the underlying idea is not obscured by details. we will now consider
the special case of type (0. I) approximation before turning to general (In. 11)

in the next section.
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a)

b)

'0
FIG. 1. (a) f(z) = z + z'. r(z) = 1/(z,- J Ii); (b) .f(z) = z + z'. r(z) = I/(z·- 1.1).

Consider the function I(z) = z + z'. As illustrated in Fig. L I maps S
onto an oblong loop oriented along the real axis that attains maximum
modulus at the points A = 1 and B = -1. Now for l' E R 01 to be a better
approximation to I than 0, l' must have positive real part at A and negative
real part at B. Conversely, if l' is any such function, then obviously

IIf - crll < IIIII for small enough c> O.
From these considerations it follows that 0 is not a BA to I in R01 ' The

demonstration of this is that the function r(z) = I/(z - I.li), as illustrated in
Fig. Ia (the cross indicates the pole, the arrows indicate 1'/11'1 at j(A) and
I(B)), has the required real parts at A and B. On the other hand, 0 is a BA
to I in R;) I' For when only real coefficients are permitted. the denominator of
l' and hence l' itself must have uniform sign on I-I, II. in particular at A and
B. so a correction of the required form is impossible. This is suggested in
Fig. lb.

We have shown: there exists a lunction I in A r that can be better approx
imated in ROJ than in R~l' This answers one of the questions posed by
Ellacott. The same argument applies to approximation in R On for any n ;) 1.

Moreover. symmetry implies that if r*(z) is a BA to I with complex coef
ficients. then r*(z) is another one. Thus best approximations in R 0 I need not
be unique.

Now rotate the figure by 90°, and define I(z) = z - z'. This function
attains maximum modulus at A = i and B = -i. as illustrated in Fig. 2. As
before the function I can be approximated better by a function in R;" with a
pole near -lor 1 than by O. which is the best approximation among
functions with no poles. Therefore any BA 1'* must have a pole, which is
necessarily asymmetrically situated with respect to the imaginary axis. This
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A

()
B

implies that -r* ( -~z) is another distinct SA, and we have shown: best
approximations of rea/~analyticfunctions in R;) I need not be unique.

The organization of the remainder of this paper is as follows. In Section 2
we establish results (a) (Theorem I) and (b) (Theorem 2) mentioned in the
abstract for general (m, n). In Section 3 we treat result (c) (Theorem 3 ).
Finally, in Section 4, we turn to the question of best approximation on small
disks and intervals. A variation of our symmetry arguments shows there that
r* need not approach the Pade approximant r P as the size of the disk or
interval decreases to 0 (Theorem 4). This conclusion is counter to what one
might expect on the basis of a theorem of Chui et al. 131 which states that r*
does approach r P if attention is restricted to real coefficients. We show
further that both nonuniqueness and the r*~. r P question are closely
connected to a normality condition appearing often in Pade approximation
that requires a Hankel matrix of Maclaurin coefficients to be nonsingular.

2. NONUNIQUENESS IN R","

If K is a positive integer, let W A denote the primitive Kth root of unity

We will say that a function (/J is K~symmetric if (j)(wKz) == (/)(z). Equivalently.
¢; is Ksymmetric if its Maclaurin series takes the form

(I)

We will also say that a set M c; (e.g.. the set of poles of 1iJ) is K~symmetric

ifwKM=M.
In all of the arguments of this section. j~ denotes any function with the

following three properties:



NON UNIQUENESS OF BEST APPROXIMATION 279

(a) f/\EA,

(b) ZfK(Z) is K-symmetric (i.e., f/\(z) = a,z/\ 1 +a 2 z 2
/\ 1 + ... ).

(c) fK attains maximum modulus at exactly K points of S.

These points of extreme modulus will necessarily be just the Kth roots of
unity times some constant eiT

• and let us denote them by 1(,1.

By (b) and (c) we also have, for some nonzero c E

As a concrete example, throughout this section one can take f/\ to be

in which case the constants are eiT = I and c = 2.
We begin with some easy lemmas. For an arbitrary function r E R",n'

there is no simple test to determine whether or not r is a BA to f/\ : the local
Kolmogorov condition is necessary but not sufficient for this, while the
global Kolmogorov condition (or Meinardus-Schwedt condition) is sufficient
but not necessary [8]. However. in the special case r = O. the two conditions
coalesce and one has the following:

LEMMA I. Let R denote R mn or a subset of it (such as R ;nn) that is
closed under multiplication by real scalars. The zero function is a 811 to.l~ in
R if and onzr if there exists no r E R sat is/ring

Relczr(z)1 > 0 for z = (,. 0 ~ k ~ K -- I. (2)

Proof Equation (2) is a specialization to the present context of the con
dition

Re If(z) r(z)] > 0 Ii z E S S.t. If(z)1 = Ilfll. (3 )

which can be established by the usual derivation of the Kolmogorov criterion
for linear approximation [11, Theorem 18]. In brief, ifilf/\-rll <llf/\1I for
some r E R, then obviously r must satisfy (3). Conversely, if r satisfies (3). it
is easy to show II.I~ - Dr II < il f/\ II for all sufficiently small G > O. •

The next lemma states that the K-rotations of a BA to f/\ are also BAs, up
to a multiplicative constant. This observation has nothing to do with the fact
that II II is the Chebyshev norm. and for an application of the same idea in a
least-squares approximation context, see 15, p. 541.
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LEMMA 2. If r* is a SA to fK' then so is the function f* defined by
f*(z) = wKr*(wKz).

Proof Since ZfK(Z) is K-symmetric we have ZfK(Z) = wKzj~(WKZ), hence
fK(Z) = wKfK(WKZ), from which we compute IlfK -- f* II =
IlfK(z)-wKr*(wKz)11 = IlwKfK(WKZ) - wKr*(wKz)11 = IlfK-r*ll· I

The third lemma has more substance, and is essentially half of the nonuni
queness argument.

LEMMA 3. Ifn ~ 1, then °is not a SA tof" in R",",

Proof Let 0 E S be any number with 0 *- (k If k. We claim that for all
sufficiently small [; > 0, the function r E R 01 c; R",n defined by

r(z) = c I/(Z -- (I + 1:)0) (4)

satisfies (2) of Lemma 1. To establish this, it is enough to take E = 0,
because the pole at o( I + G) remains bounded away from each (k as c ---+ 0.
Thus if s denotes the Moebius transformation s(z) = z/(z - 0). it will suffice
to show that s maps S into Re z > 0.

In fact. s maps S onto the line Re z = t To see this. note that s maps the
straight line through 0,0, -0 onto i:;. Therefore it must map S. which
intersects that straight line at 0 and -0 with right angles, onto a generalized
circle orthogonal to at z = i that passes through 00. namely. the line

Re z = t. I

Our final lemma provides the other half of the argument.

LEMMA 4. Suppose m. n ~ ° and K ~ III + 2. Then ° is a BA /0 j~

among functions in R"," whose set of poles is K-symmetric.

Proof Following Lemma l. consider a function r in this subset of R 11I11'

which we can write r(z) = p(z)/q(z) with p E Pili and q E PII • where p and q

have no common factors. The K-symmetry of the poles of r implies that q is
a K-symmetric function, and, in particular. q((k) has the same value for all k.
which we can take to be 1 by dividing both p and q by this number.

Equation (2) of Lemma I thus reduces to the Kolmogorov criterion for
the numerator p: does a polynomial p E Pili exist for which

Relczp(z)1 >° (5 )

Since the polynomial czp(z) has degree at most III + 1 K. its value at
z = 0, namely. O. is given by a discrete mean value over the points (,.

1 " ,I
0=--\ c(p(().

K - k k
k I)
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By taking the real part we obtain

281

which contradicts (5). This implies that the polynomial in question cannot
exist, and the lemma is proved. I

Our first two main results are now straightforward consequenct:s of the
lemmas. The first theorem shows that for any m;? 0 and n;? 1, there exist
functions whose BAs in Rmn are not unique.

THEOREM 1. Suppose m;? O. n;? I, K;? m + 2. Then the SA to f/o. in
Rmn is nonunique.

Proof By Lemma 4, 0 is a BA to f/o. among functions in R mn with K~

symmetric pole sets. On the other hand, by Lemma 3. it is not a BA in all of
R mn' This implies that any r* of fk must have a pole distribution that is not
K~symmetric. Therefore the function f* defined by f*(z) = w/o.r*(w/o.z) is
distinct from r*. On the other hand, by Lemma 2, f* is also a BA to f/o.' I

In the special case m = 0, we can take K = 2, and the above argument
shows that the BA of type (0, n) to any odd function f E A is non unique.
unless f attains maximum modulus at more than two points on S. Thus
non uniqueness in rational approximation on the disk is by no means
confined to pathological examples.

In Theorem I there is no condition relating K and n. By making K large
enough, we obtain examples for any m ;? 0 and n ;? 1 in which the number of
BAs is arbitrarily large.

THEOREM 2. Suppose m ;? 0 and n ;? I, and let K;? m + 2 be an integer
with no divisors j in the range 2 ~ j ~ n. Then f/o. has at least K distinct SA s
in Rmll •

Proof We have seen in the last proof that a BA rt must have a pole set
that is not K~symmetric, which means, in particular. it must have at least one
pole. On the other hand, since rt E R mn' it can have at most n of them. Let v
be the number of poles of rt. The hypothesis implies that v and K are
relatively prime, and it is obvious hat this implies that all of the funcions r;*
defined by

O~j~K-I,

must have distinct pole sets. By Lemma 2, these are all BAs to f/o. in R mil' I

This proof shows in fact not only that flo. has at least K distinct BAs, but
that the number of them is an integral multiple of K. Note that it does not.
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however. exhibit a function that has an infinite number of BAs. although
Ruttan has shown that such a situation can occur in complex rational
approximation on an interval 1161.

By essentially the same argument as the one above. it is not hard to
construct functions that have nonunique BAs for many (m. n). For example.
any function f E A of the form

has nonunique BAs of all orders (m, n) with n;? 1 and m * l. 3. 7.15,.... We
do not know whether there exist functions whose BAs of all orders with
n ;? I are nonunique.

3. NONUNIQUENESS IN R ~nn

As in Section I, let A rand R ~nn denote the subsets of real analytic
functions in A and Rmll , respectively. In this section we are concerned with
BAs to f EAr out of R ~Il' which we will again denote by ro;. Existence of at
least one such BA is guaranteed by the theory of Walsh [171.

Let f~ denote any function that satisfies

(a ' ) f~EAr,

(b) zI~(z) is K -symmetnc.

(c) I~ attains maximum modulus at exactly K points :s, I of S.

(d) I E ~sd.

Note the presence of the new condition (d). In the theorem below K is even.
so (d) implies also- lEI (d. Since I~ EAr, the points of extreme modulus
of I~ on S will be the "skew Kth roots of unity" (, _-c (!)~ I I '. 0 ~ k K I.

The fact f~ EAr also implies that the constant c of Section 2 is real. We
now show that for any m ;? 0 and n;? I. there exist functions whose BAs in
R~n are not unique.

THEOREM 3. Suppose m;? O. Il;? I. K;::- m -r- 2. Gild moreOl'er K ')1

for some positil'e integer 1. Then [he BA to I~ ill R;,I/, is nOI unique.

Proof First we observe that 0 is not a BA to f~ in R ;".,. for 111 the proof
of Lemma ."\ we have already constructed a better approximation. nameh.
the function r E R ;nll given by (4) with a ~-c I or a= I.

On the other hand, Lemma 4 shows that 0 is a SA to h among functions
in R~lln with K-symmetric pole sets. A fortiori. 0 is a SA among functions
r E R;1l1l with the property that zr(z) is K-symmetric. Our proof will proceed
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by showing that the assumption that r* is unique implies that zr*(z) is K
symmetric after all, a contradiction. We argue by induction. showing that
zr*(z) is 2/~symmetric successively for j = 0, L.... J.

Case j = O. Trivial. because any function is I-symmetric.

Case j + I, 0 ~ j ~ J -- I. Let us write f.1 = 2/ for abbreviation. If zr*(z)
is f.1-symmetric, the Maclaurin series of r* has the form

Now (w~/2I')" = -I, and therefore by applying Lemma 2 to r*, K/2f.1 times
in succession, we obtain a new function f* E R ;,"',

which must also be a SA to f~. If r* is unique, then f* must be the same as
r*, so the coefficients of odd index in this expansion are 0, and we have

Thus zr* (z) is 2f.1-symmetric, which completes the induction step. I

As in Section 2, there is some flexibility in this proof; we could for
example take K to be any number containing some power of 2 larger than n
as a factor, and then count poles. However, it appears that no argument of
this type will establish the existence of more than two BAs to a given
function. Thus the question of whether a large number of distinct real
analytic BAs can occur must remain open.

On the other hand, it is easy to see that result (d) of the abstract, which
we proved in Section I for type (0, n), n.) I, holds for type (m, I). m.) O.
also: ~rI satisfies (a'), (b). (c) lor an even integer K> 2m. and if I E j(, i.
then I can be better approximated in R",] than in R;"J' For again 0 is not a
BA from R",] (by Lemma 3). but 0 is best in R;" J' as can be seen as follows:
Assume r E R;nJ is better and has a finite pole Zo > O. say. Then we can write
r(z)=p(z)/q(z) with q(Z)=Z~2_ZK/2 and pEP"'.K' J' Note that
q((,) > 0, 0 ~ k ~ K - I. so Re[zp(z)1 has constant sign on 1(d, which. as
in the proof of Lemma 4, contradicts the discrete mean value theorem. By
the same argument, 0 is best in R ~o' Hence, 0 is best in R;" J •

4. PADE AND BEST ApPROXIMATION

ON SMALL DISKS AND INTERVALS

If m, n .) 0 are given and I is analytic at the origin, the Pade approximant
of type (m, n) to I is the unique rational function r P of type (m, n )., analytic
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at the origin, whose Maclaurin series matches that ofI to as many terms as
possible. Thus rP is in a sense the optimal approximation to I at the point
z= O. A natural question posed by Walsh 1181 is: if for each I: > O. r; is a
BA to I on f;L1. must one have r,*-~ r P as /; -t O? By r; --+ rp we mean that
approaches r P uniformly on any compact subset of that contains no poles
of rp

•

In 1964 Walsh answered this question in the affirmative for the restricted
set of functions that satisfy the following normality condition 1191· Let I
have the Maclaurin series I(z) = a o + a l z + .... and define ak = 0 for k < O.

Assumption 8. The n X n Hankel matrix

H=('a m
lIil// /a

nl
,)

\am ./ am /I

is nonsingular.
Assumption B appears frequently in the theory of Pade approximation. for

it is readily seen that the coefficients of 1'1' satisfy a linear system of
equations involving the matrix H.

Walsh's result asserts: ifI satisfies Assumption B. then 1';" -4 1'1' as /; O.
But Walsh did not determine whether Assumption 8 is actually needed for
this conclusion to be valid. It is easy to imagine that it might not be. for in
1974 Chui et al. published a result to the effect that in real approximation on
a small interval 10, el. 1'; --+ rP for any I 131. (We will return to their result
below.)

Nevertheless. a variation of our symmetry arguments shows that
Assumption B is essential after all. Following Section 2. let j~ be any
function that satisfies the conditions

(a) IhEA.

(b) Zlh(Z) is K-symmetric.

(c'l I~h 11(0)*0./~2h 1)(Oh'O.

THEOREM 4. Suppose m;;; 0, n;;; I. K;;; 2m + 3. I c= j~. Then r P == 0.
hut 1',* -It 0 as [" O.

Proof Observe first that since K- I > m. the Maclaurin coefficients of
.I~ satisfy a k = °for k ~ m, which implies hat the matrix H is singular. Thus
.I~ does not satisfy Assumption 8. so the claim does not contradict Walsh's
result. The fact rP == °is also a consequence of ak = 0 for k ~ m.

To prove that r,* does not approach the zero function as /; -,0. it is
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enough to show that not all poles of ri converge to 00 as e ---; 0: that is, there

exists p >°such that for all sufficiently small e, r: has a pole in pJ. Let the
given problem be rescaled from eJ to J by defining for each e > 0 F,(z) =
f/o;(t;z), Ri(z) = r;(ez). We will in fact prove the stronger result that R':; has
a pole in pJ for some p, which amounts to showing that at least am: pole of
r; converges linearly to the origin as c; ---; 0. The proof as usual has two
halves:

(i) °is not a BA to F, in R mn (for all sufficiently small c;):

(ii) °is a BA to FE among functions in Rmn with no poles in pJ (for
some suitable fixed p).

Proof of (i). The function F, satisfies conditions (a) and (b) of Section 2
trivially for any e E 10, II. From (c ' ) it can be seen that for all sufficiently
small positive e, it also satisfies condition (c). Therefore Lemma 3 applies.

Proof of (ii). If ° is not a BA to F, in the class mentioned, then by
Lemma I there exists r E Rmn that satisfies (2) but has no poles in pJ. Let r
be written r(z) = p(z)/q(z) in lowest terms, with q(O) = 1. If P is large, q
must be approximately I on J. In particular. for any e> °we can pick p

large enough so that necessarily

max I arg q(z)1 ~ e.
:ES

which means that (2) implies

larglczp(zlli < Ti/2 + e for z = (k' 0 ~ k ~ K - 1. (6 )

For each k, define ak,TkE by c(kP((d=ak+irk, and in addition.
define a: =maxlO,ad and ak =minI0,ak~' Let a,r.o ,a~ be the
corresponding K-vectors. In this notation (6 1amounts to the condition

By summing over k, we obtain

(vector I-norms). At the same time, since K > m + 1. our usual mean-value
argument from Lemma 4 implies L~ Ii 011 = 0. hence il a III = ~ 110 11(, and
therefore we have

(7)

On the other hand, 0 and r cannot differ too greatly in norm. The real and
imaginary parts of czp(z1 on S are conjugate trigonometric polynomials in
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arg z of degree m + L with constant terms 0, and therefore they have equal
L 2 norms on S. Since K) 2m + 3 = 2(m + I) + I, they are moreover the
unique trigonometric polynomials of degree m + I that interpolate I(J I i and
JTAI at the points jarg Cd, and the equality of L norms on S carries over to
equality of I, norms on I'A f:

(8 )

(In fact T= W/\(J=-W~T, where W/\ is the so-called Wittich matrix. with
II W/\ 112 = I.) By discrete Holder inequalities, we have in general

and so (8) implies

(9 )

It is now clear that (7) and (9) will be inconsistent. contradicting the
assumption that r exists, provided p is taken large enough so that (] is small
enough to ensure 2 JK tan (] < I. This proves (ii). I

Before closing, we will make some remarks on related matters.

Approximation on smal! illlervals. How does Theorem 5 relate to the
result of Chui et al. mentioned above? Suppose f(x) is a complex function of
class em! n 1

1 [0, II, and let r; be a SA to f in R mll on [0. t: I. First. Walsh
showed in the early 1970s that his result of 1964 extends to this problem
to::>: iff satisfies Assumption B. then r:.> r P as E -, 0 [20 [. The purpose of
the paper of Chui et al. [31 was to extend Walsh's result by removing the
hypothesis of Assumption 8. However, although their proof does not require
Assumption S, it assumes that f is real and that r; denotes its (unique) SA
with real coefficients. In contrast. by an argument much like that above. one
can readily show for at least some (m, n) that r; --> r P can fail to hold if r; is
a SA with complex coefficients, even when f is real. For example. take
f(x)=x on I-E,£I and (m,n)=(O, I): then the argument of Fig.! shows
that ri has a pole for every E, but since f is linear. the problem is scale
invariant, so this pole will approach 0 linearly with I:.

Uniqueness and Assumption B. In all of our examples in Whh':ll r* is
nonunique,fhas failed to satisfy Assumption 8. Can it be that Assumption S
is enough to ensure uniqueness? To see that the answer is no. take
(m. n) = (0. I) and consider the function

f(z)=II/(Z 2)+:: tz'.

For any II > 0, f satisfies Assumption S. but for all sufficiently small 1/. a
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vanatlon of the argument of Fig. I shows that any BA has non-real coef
ficients and hence is nonunique.

On the other hand, to the best of our knowledge it is possible that for any
function satisfying Assumption B, the BA on eLf is unique for all sufficiently
small c.

Approximate uniqueness and approximate real analyticity. Suppose rP

has exactly n finite poles and, in addition, the Maclaurin series of / and rl'
agree through degree m + n but no further. This condition, which implies
Assumption B, is called A ssumption A in [14] and 115], and a number of
asymptotic results are proved there by the CF method regarding approx
imation of such functions on small disks d. One of these is that BAs are
"approximately unique": any two BAs r~, ri satisfy r~ ~ ri = O(c m +n - 2)

uniformly on compact sets containing no poles of rl' [14. Section 61. In
contrast, the construction of Theorem 4 here shows that in the absence of
Assumption B, ri - ri need not approach zero with c at all. Alternatively.
Assumption A also implies I[ ri - ri [1£.1 = 0(e 2m +2n +)). while in the absence
of Assumption B it appears that this must be weakened to 0(C 2mT )jI.

For / EAr, analogous estimates follow from 1141 for how close r;, must
be to R ;n,,' in particular to the CF approximant r~f E R ~1I1: II r;, 
0(C mH1

- 2) on compact sets with no poles of rl'. and I[ r; - r~flld =
0(1; 2m, 2n +)). Again it seems that without Assumption B. these reduce to CO

and f; 2m + .\ respectively.
In summary, although degeneracy of the Pade approximant is not

necessary for nonuniqueness and associated phenomena in complex rational
approximation, it is evidently a related factor.

Notes added in proof (i) Block structure ill the Walsh table. It is well known that if the
best real approximations Ir~,n I to a continuous real function I on a real interval are arranged
in a so· called Walsh table indexed by m and n. then degenerate situations in which a single
rational function is best for several degrees (m. n) always occur precisely in square blocks.
except where r~n "" 0 1111. (An analogous block structure appears in the Pade table.) From
the example at the end of Section 2 one may however conclude that in a compkx approx
imation such a block structure need not occur. at least in the top row (n = 0) of the Walsh
table. Indeed. our arguments show that for each k ~ 1. the best approximations to I of types
(2' 1. 0)..... (2" 1 - 2.0) are all equal to the polynomial section of/of degree 2' 1. while
for any n ~ I the best approximations of types (2'. n) ..... (2" 1 - 2.n) arc better.

(ii) Pade and best approximation. Several additional results have been obtained
concerning the Pade and best approximation questions discussed in Section 4: see 121 I. In
particular. further examples show that r* .,4 r" can occur even for real approximations of real
functions. both on [0. /: I and on 1-- D. /: I: the same is also true for the analogously restricted
best approximation on small disks DLf. Thus the result of [31 quoted above is lalse.
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